
Designing Systems 

It’s rare for a web application nowadays to be built in isolation. As a full stack developer, 

you’re likely to have to work on entire systems, not just a single component within 

a system, and doing this effectively means being able to think at a different level of 

abstraction when problem solving. 

In a modern organization, the system will be constantly growing and changing, 

although individual components may remain stable. Your job is to design those 

components in a way that maximizes agility—that is, when something changes in the 

future, it shouldn’t be painful to transition. These components can exist at any level of 

abstraction, from very high levels of an organization’s architecture to individual classes 

and modules in a codebase, and these principles can be applied at any level as well. 

The type of systems a full stack developer will come across in their career will 

range from the simple (such as a brochureware site) to the massively complex (e.g., an 

account management site for a utility, which has many functions and has to integrate 

with the central billing and CRM components of a huge enterprise architecture), and 

it’s important to know how to work within all these types of environments. Even what 

might at first seem like a simple, standalone component can quickly become entangled 

in other systems without careful thought, or can become a silo that could duplicate 

functionality or isolate data that already exists inside the organization. 

A well-designed system can quickly become greater than the sum of its parts through 

the network effect. Some organizations have an “architect” role (or several) that is solely 

responsible for designing these systems and the interactions between them, usually at 

an application level. Even when there is a dedicated architect, it is important to ensure 

that you’re thinking about the system as a whole too, and not just the single components 

within it. 

 
 
 
 



 

System Architectures 

Two common types of system architectures you may come across are “monolithic” 

and “microservices,” but in reality, most systems will lie somewhere on the spectrum 

between those two extremes. These generally refer to organizing individual applications 

within the system, and how they interact, rather than at a smaller level. Both styles have 

their pros and cons: monoliths can be easier to build initially, but have the downside of 

becoming large and difficult to change if multiple teams work on the same codebase. 

Microservices require a strong platform to grow from, but can be easier to adapt and 

change in the future. 

 

 

A microservice is a small service that takes responsibility for one part of a system. It can 

be deployed and scaled independently of any other part of the system, and communicates 

through well-defined APIs. Microservices can be thought of as applications of the single 

responsibility principle from SOLID (discussed in more detail later in this chapter) at a system 

rather than class level. A microservice architecture is therefore composed of a number of 

these microservices that are deployed and orchestrated as a larger system of individual 

components. 

By contrast, a monolith is a single codebase with a single application that performs all the 

functions of that system. It may be scalable, but the scale is achieved by duplicating the whole 

system on other machines, rather than individual components of it. Although it may expose an 

API for external systems to integrate with it, internal components of the system communicate 

via method or function calls. 

Figure 4-1 shows the contrast between these two architectures. Although the microservices 

system seems more complex, this is only because it forces you to make interactions 

between services explicit, rather than the potentially complex hidden interaction model 

within a single app. 

 
 
 
 
 
 
 

 

WHAT IS A MICROSERVICE? 



 

 
 

Figure 4-1. A monolith systems diagram versus a microservice equivalent 
 

 

When working with large systems, a well-designed microservice architecture will 

allow you to limit those changes and growths to individual parts of the system, meaning 

it can be quicker to move since there are fewer moving parts involved. But this can be 

hard to design. For small systems, the overhead of managing microservices can be too 

big to be worth it, and can slow down initial development. Microservices are slow to get 

started, but often allow you to maintain a good pace of development that can be tricky 

with a monolithic design. 

Even when designing systems with growth in mind, it can be especially helpful to 

start with a single application and codebase, and then break that out into microservices 

when that single application starts to become too big. 

The trick to designing a system at the application level is to make each component as 

small as it needs to be, but no smaller. This is easier said than done, and there is no hard- 

and-fast science or rules to apply. System design can be more of an art, and very context 

 
 



CHAPTER 4 DESIGNING SYSTEMS 
 

dependent, so it’s useful for a team to design collaboratively. Following patterns for 

software architectures that might already exist inside your organization is a good start, as 

it can make integrating against dependencies easier. 

What a software architecture is not is a list of a technologies that are used to build 

your system. At the point the architecture is designed, you should only care about 

capturing the concepts and their interactions, and then determine where they sit 

within the system. Once you have identified these, you can use your non-functional 

requirements to determine the properties each component in your system must have, 

and then find the best technology fit for each one of those. Trying to force technology 

choices into an architecture before the concepts, interactions, and systems are identified 

can lead to decisions that compromise the goals of making a good software architecture. 

 
 

Identifying Concepts 

The tiered application hierarchy is a common approach to designing systems, whether 

it’s the ubiquitous Model-View-Controller architecture (shown in Figure 4-2) of most 

web applications (or a variation on this, such as Model-View-View Model) or the 

three-tier model of an enterprise architecture. In order to fit your system into these 

models, you first need to identify two things: the domain concepts that you care about 

(for example, this could be customers, stock inventory, or news articles), and the ways 

the users interact with them. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 
 

Figure 4-2. Model-View-Controller architecture 
 

The domain concepts will form your model layer in a Model-View-Controller (MVC) 

app, or your persistence/business logic components in a three-tier architecture. The 

interaction methods will form the view and controller (or view model) of an MVC app, or 

the presentation layer in a three-tier architecture. 

In MVC, the view deals with actually presenting the detail to a user (in a web 

framework, this is often HTML templates), whereas the controller deals with getting all 

the data and values that are needed to create a template, and performing any actions 

that a request may have asked for. 

 
 
 
 



 

It can be tempting to add logic relating to models into a controller in an MVC app 

(for example, building a model up), but a controller is too heavily coupled to a particular 

view, and most logic actually belongs to a concept itself, making the model a more 

appropriate place for it. The “fat model, thin controller” approach can make refactoring 

an architecture much easier at a later date, as it can allow you to extract concepts into 

their own APIs, which are shared across multiple components. 

In an object-oriented world, the downside of the fat model approach is that it can 

bloat your classes significantly. Rather than adding lots of methods to a class, you can 

instead implement other useful classes that help you manipulate models. If you’re 

using a language that mixes different paradigms, such as JavaScript or Python, then 

implementing these as functions can also be helpful, leaving the only state in the model. 

There are many different types of helpers you can separate from a model. For example, 

builders are useful to help build a model (out of a form, for instance), and validation 

logic could also be extracted when it makes sense to do so. 

The Model-View-View Model (MVVM) pattern differs from MVC in that the 

controller disappears and a View Model is bound specifically to a view. In a typical MVC 

controller, you may have a controller with a method for dealing with a GET and one for 

dealing with a POST. For the GET case, the controller would fetch an appropriate model 

and render the view by passing through values. In the POST case, the controller would 

read the request, perform any appropriate validation, and then apply those changes 

to a model. In MVVM, a view model is instead "bound" to a view, so that when the 

view is rendered, getters on the view model make the values available in the template 

appropriately. To deal with the POST case, setters are used to make the changes back. 

Beyond variations on MVC like MVVM, MVC has evolved beyond its initial function. 

Although many server-side web frameworks, such as PHP's Laravel, Ruby's Rails or 

Python's Django use MVC (although Django confusingly uses the terms Model, View, 

and Template for the Model, Controller, and View, respectively), it is not uncommon to 

see slight adaptations to the MVC architecture, especially when it comes to things like 

kicking off long-running actions. 

The lines of MVC tend to become blurred in client-side code. As JavaScript has 

become more common on the server too, it's not uncommon to find NodeJS applications 

that do not strictly subscribe to MVC patterns. This is often because of the tendency 

of JS applications to be made by composing libraries together, rather than choosing 

frameworks. However, many apps (sometimes by design, other times through a natural 

tendency, as it is an effective way of organizing concerns) using NodeJS will have an 

MVC-like structure, even if not explicitly. 



 

In the popular React+Redux combination, it is common to structure your app such 

that the Redux store is your model, and then have the React components as the view. 

The Redux connect() function then maps the state in the store and dispatchable actions 

to properties, and this mapping provides the role of the controller. However, views can 

also nest other components, which themselves might be wrapped in a connect(), so a 

view can include another controller. This hierarchical method might look like MVC close 

up, but from further away it becomes clear it is not, though the separation of concerns 

remains useful. 

MVC often falls down when there is rich UI interaction. For example, when 

manipulating the UI, not every action necessarily needs to persist in the model, but there 

is some temporary state that is stored somewhere. If you wanted to implement a drag- 

and-drop interface, then in pure MVC, you would have to persist every movement to the 

store going through a controller. Instead, it is common for the "View" to instead store 

its own state, only going through the controller when the item is dropped, so that the 

model is correctly updated. MVC is a good starting point, but you should not artificially 

constrain yourself strictly to the pattern-it has limitations when it's okay to break the 

pattern too. 

Similar to the way a React+Redux app is composed of many layers of things that are 

loosely analogous to layers of views and controllers, you will often find yourself doing 

the same in your application too. Your server-side code will often be structured in MVC, 

along with any rich UI code, although the two may not necessarily be linked. Although 

some models may be shared, it's likely your server-side and client-side code will differ 

somewhat, and the concerns of the controllers will be different. The server-side code is 

often more concerned with validation and security, while the client-side code may be 

less concerned with these factors. 

When identifying the concepts that make up your models, it's also important 

to understand the context in which you're making those identifications. Domain- 

driven design (DDD) is a methodology in software engineering that helps manage 

these problems. At the core of DDD is the concept of the domain: the things that your 

organization knows and does that are relevant to a project. The domain is based in the 

reality of your organization, and it is through reality that we can identify the models. By 

starting at the level of what people in your organization currently do and how they refer 

to things, and using this as a basis for building your models, it becomes easier to build 

software that matches the actions people actually want to do. 

 
 
 



 

Sometimes, this collection of models is known as an ontology—that is, the structure 

that defines your domain. It is usually helpful to use consistent terminology throughout a 

system. For example, an e-commerce store might refer to "items of stock" in the logistics 

area, but "products" in the front end, but these may mean the same thing, so using a 

single term throughout your system can simplify things. 

Although it can be very tempting to rely on a single model definition that can be used 

throughout a system, it is also important to recognize that those models are also used in 

different contexts. As I touched on before, the context of an item in client-side code may 

be different to that of the data store, so using an appropriate variation of the model in 

that context makes sense. These models may be different implementations of the same 

concepts, but they need to translate to the same concept in another context. For example, 

moving from a client-side to server-side context can involve POSTing a form to a server, 

and it can be tempting to just re-use the POST data directly. However, what you should 

instead do is translate between the two contexts, using a method that accepts the form data 

of that model, and returns a new object that makes sense in the context of the server-side 

code. This translation can often be fairly simple, but is also a good place to do things like 

authorization checks or validation. Performing this translation as things move between 

your contexts can reduce bugs, as each context comes with its own set of assumptions, 

and moving data between contexts without translating it appropriately can mean different 

assumptions on that data that are no longer true. 

A common pitfall here is to conflate similar concepts in your domain, or work at a 

level of abstraction that’s too high. One example may be in a large enterprise system, 

which has to deal with the concepts of customers and employees. It can be tempting to 

try to unify these into some sort of “people” concept, but in most systems, the concepts 

of employees and customers are different enough to benefit from remaining separate, 

and any concerns about “duplicating” data (for example, if an employee also appears in 

the customer database) are never realized. 

Many of the identified core concepts will have state that needs to be managed, 

which means that there needs to be a data store and the business logic for querying and 

manipulating the store. The exception here is where components and concepts for user 

interaction are used, which either have no persistence, or only persistence relating to 

temporary or session data, rather than core concepts. When the architecture is realized, 

this persistence and business logic can be split into separate components—one for 

your database, and then an API that interacts with that database and implements your 

business logic. When modelling your system architecture, it’s useful to think of them as 

one concept that’s bound together. 



 

When it comes to realizing the architecture, it’s important to choose the right data 

store for these concepts to enable persistence. NoSQL datastores are popular, but there’s 

still a place for relational data, especially when integrity is very important, or the model 

is very well-defined and stable. This is discussed further in the Storing Data chapter. 

Dealing with the business logic of the core domain concept with the datastore 

as a single high-level component provides a good level of abstraction for the other 

components to deal with those concepts. All manipulation of these concepts in your 

persistence layer then becomes an implementation detail of an API, rather than the 

persistence layer becoming an integration point itself. Multiple applications accessing 

the same database directly can cause problems for data integrity and deployments, 

especially if any schema changes are involved, so the API that implements the business 

logic wraps the database and becomes the single point of interaction for other 

components. Remember that the goal here is for each component to be able to grow and 

move independently of each other, and this encapsulation enables that. 

 
 

Identifying User Interactions 

User journeys and stories (or epics) can help identify user interactions. Once you identify 

which journeys a user wants to take, they can come together into a single front-end 

component. It’s very tempting to group your user interactions by concept, but this will 

often result in a lot of unrelated code in the same component, and ideally you want each 

set of related things to move at its own speed. Separating by user can often go far. For 

example, on an e-catalog site, staff may be responsible for updating and maintaining the 

catalog that users then browse, but the user journeys for browsing the catalog are very 

distinct from maintaining it, so these should be different components. 

For those who have worked with a framework that’s good at making CRUD (Create- 

Read-Update-Delete) apps, this may at first seem counterintuitive—it’s typical in these 

frameworks to designate one controller per concept, with actions for things that occur 

on those controllers. Often, the code you need to execute this is auto-generated for you! 

However, one of the key goals we want to achieve is the ability to grow each part of the 

system independently, without introducing risks to other parts of the system, so we can 

maintain our pace of change. The user stories and interactions in a management system 

will often grow in a very different direction to one relating to the browsing component, 

and by linking the two together, you may find yourself being dragged down by having to 

change more than if you’d kept them separate. 
 



 

Handling Commonalities 

Once you have identified the individual components in your system, you are then likely 

to have a good understanding of the boundaries of those components, but it’s also likely 

you have identified some common dependencies in your system (these are likely to be 

core elements of your organization, such as content, customers, or inventory). If these 

common dependencies are domain concepts, they can be abstracted together behind an 

API, and if they’re interactions, a shared library or component between your front-end 

applications is the best place for it. 

 
 

Working with Legacy and External Dependencies 

In many organizations, there are likely to be systems outside the scope of what 

you’re responsible for. This could be an off-the-shelf or SaaS system bought by your 

organization or a project managed by another team. You need to capture these 

dependencies so you know how your system interacts with them. It’s important 

to remember that although you’re likely to have less influence over these external 

dependencies, they are not set in stone, and you can request that the people that own 

these make changes. If you’re having to ask for lots of changes, perhaps this component 

should actually belong to your team, in order to reduce the risk of introducing blockers. 

If these systems are legacy, or are a dependency for a number of components within 

your system, it can be helpful to insert a facade or an abstraction layer between it 

and you. Especially if a system is legacy, introducing a new interface can assist in 

decommissioning it, as this interface can be changed to abstract away a replacement 

service without having to update all the clients that depend on the legacy component. 

This is known as the strangler pattern. 

When designing your system, it’s important to understand any non-digital 

components that might exist in it, and how any interactions they have—for example, 

printing out dispatch labels, or shipping a physical product. You may not be responsible 

for building these, but it’s important to ensure that the design of any physical processes 

fits in with your architecture in order to avoid painful integrations later. Ultimately, you 

should be able to trace every interaction with a user, data, and response to an action that 

is generated through the entire system, including its real-world components. Treating 

these non-digital dependencies like external dependencies will often help. 

 

 



 
Component Interactions 

 

 

It’s important to understand the relationships between these components, and the way 

they need to communicate. The way to do this is to reflect on the different scenarios 

through which a user may come to use the system, and the paths and workflows a user 

takes to accomplish their goals. These are called user journeys, and it’s useful to identify 

which front-end component each journey belongs to, consider which concepts it needs 

to interact with, and determine the nature of that interaction. 

In a typical web architecture, there are three ways for components to interact: 

asking for data; taking an action synchronously, such as when the result of the action, 

or knowing when it was completed, matters; or taking an action asynchronously, when 

either the result doesn’t matter, or the time taken to perform this action is so long that it 

makes no sense to wait for it to finish before showing the user. The latter case includes 

actions that are completely digital and take a long time, like video transcoding, or involve 

activity in the real world, such as sending out a membership card or shipping a product. 

For these types of asynchronous actions, all the user needs to know is whether or not the 

request to take the action has succeeded, so the asynchronicity can be hidden behind a 

synchronous service. 

There are two common communication types between components in a system: 

requests using HTTP and message queues. For requesting data or making synchronous 

changes, HTTP is a natural fit, and a particular type of HTTP interaction known as REST 

is a popular choice—I will cover this later. HTTP GET can be used for requesting data, 

and HTTP POST or PUT should be used for making changes. For asynchronous actions, 

where it doesn’t matter to the user whether it succeeds or not (this could be something 

like recording analytics), message queues are a good fit. However, if the code is front-end 

code, it is often easy to make a fire-and-forget XHR call (XMLHttpRequest, a browser API 

for making HTTP requests, and an important part of the asynchronous JavaScript and 

XML-AJAX technique). With this kind of fire-and-forget call, the result of processing may 

not need to be surfaced to the user— they simply need to know that the request has been 

made—although for others, tracking progress may be needed, where RESTful queries 

can be used to interact with jobs on a message queue. 

 
 
 
 
 
 
 



 

With all of these things identified, it’s then important to reassess the boundaries 

of these components, and also at what level these components live. If there are two 

components that seem to communicate with each other a lot, this could indicate that 

they actually belong in the same component. On the other hand, if there’s a central 

component that everything seems to talk to, this may suggest that this component does 

too much, and there could be smaller elements that should be extracted, or that perhaps 

it’s capturing a concept at too high a level of abstraction. 

When defining the interactions above, we also determine the actions that a concept 

needs to be able to perform. Some of these actions, especially if they’re large or 

asynchronous, may belong in their own components. With this in mind, it’s important to 

identify these new components and their communication style. When multiple events 

are triggered by a single action, or when an event happens in response to multiple 

actions, it can be helpful to introduce topic-based message queues. In this approach, the 

thing that causes an event does not necessarily need to know all the actions that event 

will cause. It simply sends a message to a topic queue, and everything that listens to that 

queue will perform appropriately. 

An enterprise service bus (ESB) is a popular tool that, on the surface, appears similar 

to a message queue, but offers a much deeper set of features. In an ESB, you place a 

message onto the bus, and then the ESB distributes that message to all the components 

that need it. The ESB becomes a single point of integration for all components, as shown 

in Figure 4-3, which is both its major selling point and its biggest weakness. It is often 

the ESB that controls how messages are routed (rather than an application determining 

which topics to subscribe to), and ESBs can perform additional actions on messages in 

flight, such as changing the transport mechanism or transforming the message itself, 

as well as auditing and security. They essentially become a single point of failure and 

a single integration point at which to scale. The most common use case for ESBs is 

integrating many distinct components together, as the ESB can hide the complexity of 

integration, but you should instead consider having well-defined APIs on these services, 

as this can allow for more independent scaling of systems. 

 
 
 
 
 
 
 
 

 



CHAPTER 4 DESIGNING SYSTEMS 

 
 

 
 

Figure 4-3. Modules connected to an enterprise service bus 

 

It can be very tempting to introduce an ESB to handle the interactions between 

backend components, especially if you’re moving from a legacy system that uses an 

ESB already. But you should be aware that many ESBs are designed to be plugged into 

existing components (often sold by the same vendor as the ESB) and serve as a place to 

configure those components. This is where the need for many of the features of an ESB 

come from. By making use of these features, you run the risk of subtle logic ending up in 

your ESB, so changes will be spread across multiple applications, and managing changes 

to this single shared component become tightly controlled to avoid risk. A microservice 

approach where each components maintains a higher degree of independence aims to 

avoid this. 

Using standard approaches for communications (like message queues and REST) 

will generally give you more flexibility than an ESB can, and usually at a much lower cost. 

Avoiding this kind of vendor lock-in can give your organization more agility too; there’s 

no need to get locked in to expensive contracts. 

 

 



 

One of the primary reasons to use an ESB is that it offers abstraction towards many 

different legacy components. To get around this, a common pattern known as the facade 

pattern can be used. Where a component has an odd API, or an action is actually spread 

across many different backend services, a facade can be implemented. An application 

that uses the facade pattern doesn't actually do much by itself; it simply exists to present 

a common API on top of another service and translate between that new API and the 

original one. 

Though there are desirable features to an ESB, such as logging, these benefits can 

be implemented in alternate ways. For example, a common HTTP library could be used 

across your organization with defaults for logging, or tools such as API gateways can 

provide these (but beware, as many API gateways provide the same kind of functionality 

as ESBs, and should be avoided). Otherwise, providing easy-to-use libraries or other 

functionalities to teams means they can be integrated in a way that makes sense for that 

component. 

A warning for using message queues: make sure you understand the characteristics 

of the message queue you use. For example, guarantees about delivery vary between 

implementations. You should also keep the actual communication logic of the message 

queue at the edge of the application, in case you need to move to a different message 

queue implementation (for example, if you move from AWS cloud to another one). 

This mitigates the risk of vendor lock-in, where some technologies may no longer 

make business sense for an organization to use, but technology coupling prevents the 

organization from making that choice. 

 
 

Applications vs. Modules 

Some of these components could just be modules inside a larger application, or they 

could be applications by themselves. A good rule of thumb to follow is the “single 

responsibility principle,” in which each application only does one thing, but does it well. 

This is sometimes known as “the UNIX way,” after a design principle used to build the 

original UNIX command line tools. 

However, the real world involves many more trade-offs, and for whichever platform 

you’re using to deploy, there will always be an overhead for each application, and it’s 

important to balance the overhead for each application with the benefits of keeping 

each component small. An ideal platform would make that overhead as small as 

possible: being self-service, with high levels of automation, while providing common 
 



 

functions. This is discussed further in the Deployment chapter. There is also often 

a cost implication of having multiple applications. It’s very common in the cloud to 

deploy one application per (virtual) machine, so more applications require more 

machines, although a technique known as containerization can address this at the risk of 

introducing additional complexity and a lower level of isolation to your platform. 

 
 

Cross-Functional Requirements 

The cross-functional requirements of your system will also have an effect on the 

architecture, and how you decide whether or not different components belong as 

distinct applications or just as modules inside a larger service. Cross-functional 

requirements (often called non-functional requirements) are those that cross every 

feature of your system, rather than a feature built once in isolation. The most important 

cross-functional requirements are those that specify the desired performance and scale 

of a system, as well as attributes such as security. 

Satisfying performance requirements can be hard in a distributed system. Generally, 

the more connections exist between your components in order to complete a single journey, 

the slower they will run unless you optimize (caching is one common way to do so). 

Making a RESTful call across an HTTP interface will always be much slower than 

calling a function in another module in the same application. Instead of introducing 

caching, you may be tempted to make a shared library that is distributed with each 

application in your system, but this can be an anti-pattern. If your business logic 

changes, you now need to update that library in every component that uses it (which 

means you have to keep track of everywhere it’s used) and redeploy that component. 

If it’s a big change, different parts of your system might have different versions of the 

business logic as all these deployments happen. It’s much better to have one place 

where your business logic is specified, that can be managed without having an impact 

on a large number of systems when it changes. Be wary of even small shared libraries, if 

having different versions of that library in production will cause problems. 

One example of a successful case of using a shared library was an HTTP library. This 

library wrapped an HTTP request library, but added additional logging to help diagnose 

issues and transparently handled our HTTP authorization scheme. Having multiple 

copies in production caused no issues—for example, fixing a bug didn’t call for a new 

version of that library to be immediately rolled out, as the bug only affected one service 

that used a particular feature. The shared library was decoupled from the logic of the 

backends it communicated with to enable this. 



 

In terms of security concerns, you can identify which actions in your system are 

“trusted” and which are not to ensure that the endpoints are appropriately protected. 

It can be very effective to separate applications along security lines. For example, a 

component that can register a user (an action anyone can perform) may want to live in a 

separate application from the one that can search the user database (an action that may 

be limited to call center staff). This allows “security-in-depth,” assuming your platform 

and API calls have a good security system, allowing you to put the searching application 

behind platform-level security rather than relying on application-level security. 

Platform-level security is usually more heavily audited and reviewed, and this reduces 

the risk of an application-level bug. 

Regardless of the architecture you decide on, it’s often very effective to build each 

application to be stateless; for example, not storing sessions server-side, or in a database 

that lives outside your application. This allows you to make deployments by replacing an 

application at the level of the machine and scale horizontally with multiple boxes behind 

a load balancer, which can go a long way to addressing scale. More detailed techniques 

for achieving this are discussed later on in the book. 

Caching 

When considering performance or load requirements, one powerful aspect of HTTP is its 

native support for caching. It can be tempting to put caches everywhere, especially around 

your HTTP GET calls, but this has an effect on the user experience of your application, as 

the information the user is seeing may be out of date. This is especially problematic when 

the user has updated something themselves (such as saving a new address and then still 

seeing the old one). Caches are also cumulative, so if there are multiple layers of caching 

between the user, it can take an unintentionally long time for the caches to expire. 

Caches are also effectively an additional data-store, as they keep multiple copies 

of the data, and this can become out of date with the truth. In some contexts, this does 

not present a problem; for example, a new product not appearing in search results for 

five minutes may not be problematic, but a news site publishing breaking news that has 

to wait 30 minutes for a front-page index to update is. It’s important to understand the 

effects of these delays on your user experience. When caches are used, it can be useful 

to combine them with event-based communications so that caches are invalidated in 

response to certain events. It’s also possible to go one step beyond this and use events 

alone to build up a view of the data that only a specific application relies on, rather than 

using a core API for a single point of truth. This is an advanced technique! 
 



 
Designing for Failure 

 

 

The final thing to consider are the failure modes of this system, such as what happens 

when a single component fails or otherwise becomes unavailable. For message-queue- 

based approaches (whether as an asynchronous action, or in an event-based system), 

it’s important to understand what happens if a message is received more than once, 

in the wrong order, or not at all, and to choose the underlying platform based on these 

requirements. For example, when adding a new component to a system that responds to 

events, consider whether it needs to have received all previous events that have occurred 

in the system to be up-to-date, or whether it will respond appropriately only to new ones. 

Most responses to these failure modes can be handled in the individual applications 

themselves, and there are good techniques for doing this. For RESTful communications, 

the circuit breaker pattern is useful for protecting against failure of the underlying 

services, alongside caching layers (especially making use of functionality like stale-on- 

error). If possible, making synchronous communications asynchronous is also effective, 

as the messages remain on the queue until processed. 

 

 

In real life, a circuit breaker is something that trips when it detects failure. The software 

circuit breaker is fairly similar. When the circuit breaker is "closed," everything operates 

normally, but when failure is detected, the circuit breaker "opens," stopping any requests to 

that backend service. After a period of time, the circuit breaker lets through a single request 

to see if the back end has recovered. If that request is successful, then the circuit breaker 

closes and things return to normal—otherwise, it waits again. The waiting is often some sort 

of exponential backoff with a random delay, to avoid accidentally flooding the back end the 

moment it recovers. 

The method of determining failure can vary. A common method is incrementing a counter 

every time there is an error, and resetting it when there is success, with failure being detected 

when the counter passes a certain number. This has the downside of letting a partially broken 

service go through unprotected, so an alternative is to instead measure the percentage 

of failed to successful requests over a period of time, and determining failure based on a 

percentage of failed requests over a certain period of time. Remember to differentiate between 

expected and unexpected failures though! A 404 could be a valid response from a back-end 

service if you're requesting a resource you're not sure exists, and shouldn't count as a failure. 
 

THE CIRCUIT BREAKER PATTERN 



 

This is especially useful if the failure of the back-end service is related to load, and it needs 

some time to recover. Also, if the back-end service is failing by timing out, then not bothering 

to do the request can speed up the render of the page, especially if it's a non-critical part of 

the application that's failed. 

 
Finally, it’s also important to understand the effect of these failures on your 

user stories, and when designing the user experience. For example, if your site is an 

e-commerce site, but the component that determines whether an item is in stock or not 

is down, what should be presented to the user? There are a number of options, such as 

allowing orders and then refunding if the item turns out not to be in stock, or simply 

refusing to accept orders. The correct answer depends on the context of your organization. 

It might seem that the need to handle many of these requirements would disappear 

if a monolith was built, rather than microservices, but in reality that system would be 

more brittle, as a failure could propagate to unrelated systems in the same monolith, so 

failure handling could not be avoided, although the cases to handle are different. The 

benefits of having a flexible system architecture, consisting of small, single-responsibility 

modules with well-defined interfaces, vastly outweighs the downside of having to 

manage failure modes between those modules, and you will end up with a more robust 

system as a result. 

 

Designing Modules 

In addition to designing the architecture of your entire system, you should also consider 

the structure of the individual components and modules within that system. The 

main difference between the design of an individual component and that of a system 

stems from different overheads relating to each of their constituent pieces. In a system, 

making a component too small introduces overhead for coordinating that component, 

but making it too big increases flexibility for scaling or building resilience into your 

system. Inside a single component, however, breaking it down into many smaller pieces 

introduces very little in the way of overhead, giving you the flexibility and simplicity of 

having many parts that do one thing well, without the coordination downside. 

Another aspect to consider is that, inside a component, it becomes trivial to refactor 

across module boundaries (as long as they do not stray into other parts of the system), 

which means that you can minimize up-front architectural planning inside an individual 

component, as the cost of correcting mistakes is smaller. The cost is not zero though, so 

putting some thought into application structure is beneficial. 



One major upfront decision about an individual component is which technologies to 

use: programming languages, frameworks, and libraries. In a perfect world, choosing the 

best technology and language to implement the requirements of a particular component 

would be the obvious answer, but a component always exists as part of a larger system. 

Using languages and frameworks that are already in use in other components can 

maximize the efficiency of a team because they do not have to context switch. In a 

greenfield build, this can be a risky choice. In web development, the two dominant 

approaches are to use a framework such as Angular, Rails, or Django, or to instead build 

something by bolting libraries together (perhaps with a relatively small framework 

facilitating this). Frameworks can be extremely powerful, but inflexible. For example, 

Rails lets you create monolithic CRUD applications very easily, but only if you work in 

the way that it expects you to work. If you don’t, you may encounter resistance, and it 

may actually be slower than not using the framework at all. On the other hand, using 

libraries can be slower to initiate, and involve writing more code to glue the libraries 

together, but if you need to build a very domain-specific type of application, this gives 

you the flexibility to configure your application as you wish. Frameworks are also harder 

to move away from, as almost all code must be built in the style of that framework, 

whereas libraries are easier to replace in an application because only the parts that 

interact with that library are dependent on it. 

When choosing a framework or deciding which libraries to use, make sure that you 

fully understand the capability and use case of the framework or libraries you pick, and 

that they actually meet your needs. 

Designing individual components is much better understood than designing the 

kind of complex, distributed systems that many organizations now use. The concept of 

microservices didn't come around until 2011, whereas design patterns for applications 

were first discussed in the 1980s, and the famous Design Patterns book published in 

1994. Of course, since then, the field of developing applications has continued to evolve 

and be further refined. A design pattern is a recommended (and tried-and-tested) 

approach for solving a particular type of problem in application design. When using 

frameworks, you are often forced to use particular patterns, but when using libraries, you 

will often need to implement the patterns yourself. 

There are many design patterns, but there are subtleties to the context in which you 

should apply them. Many of the design patterns in the eponymous book were developed 

in the context of the C++ language, and others in early versions of Java. In other 

languages, features that do not exist in C++ or older versions of Java can make a design 

pattern superfluous. 



 

Design Patterns is also mostly concerned with patterns for object-oriented programming, 

which has been the dominant programming paradigm in recent decades—however, it is 

not the only one. Languages like JavaScript and Python allow you to mix procedural and 

functional styles alongside OOP, but understanding object-oriented principles of design 

allows you to apply the same concepts to these paradigms too. 

In addition to design patterns, many principles have evolved that help drive good 

design and engineering. Many of these have adopted catchy acronyms like KISS, DRY, 

and SOLID. "Keep it simple stupid" (KISS) encourages developers to write code that 

is approachable for an average developer to help with future maintainability, rather 

than adding in additional layers of abstraction that may be elegant but are unnecessary 

to solve the problem at hand. "Don't repeat yourself" (DRY) encourages you to only 

implement needed functionality or concepts once, and then use them across multiple 

modules where appropriate. Correct application of DRY is discussed later in this chapter. 

SOLID refers to five different concepts: 

• Single responsibility principle 

• Open/closed principle 

• Liskov substitution principle 

• Interface segregation principle 

• Dependency inversion principle 

The SOLID principles scale up or down depending on the scale you're working at. 

The larger components of a well-architected system could be said to be SOLID, as well as 

the individual classes or functions within each component. 

The single responsibility principle, for example, is one of the driving factors behind 

microservices. The principle states that each individual class in your system should only 

take responsibility for a single thing. A corollary to this is that for each responsibility your 

system takes on, there should be a single part of your system responsible for handling it. 

For example, if a part of your system calculates VAT costs, then if the VAT rate changes, 

then you should only need to update a single part of your system, and that same class 

should also not be concerned with other tasks, such as calculating delivery costs. 

According to the open/closed principle, a particular bit of code should be open 

for extension but closed for modification. This is mostly applied to reusable bits of 

functionality. It dictates that each other class that uses your class should be able to 

 

 



 

extend its functionality beyond what is provided to satisfy its use case, without having to 

modify the module it is inheriting from. In object-oriented programming, this is often 

taken to mean inheritance, but it can also mean that any dependencies specified are 

done so using interfaces, so alternative implementations can be used. 

Barbara Liskov originally described the Liskov substitution principle in her 1994 

paper as "Let ϕ(𝑥) be a property provable about objects 𝑥 of type T. Then ϕ(𝑥) should be 

true for objects 𝑥 of type S where S is a subtype of T." (Barbara Liskov and Jeannette Wing, 
“A behavioral notion of subtyping,” ACM Transactions on Programming Languages 

and Systems (TOPLAS), vol. 16, #6, 1994). Although this mathematical description can 

seem intimidating, it simply means that if you extend a module, or provide modules 

with the same interface and intend for them to be used interchangeably, then the 

assumptions that the user of that class has about how to interact and use it must hold 

between everything that implements or extends that interface. For example, if you have 

different modules for calculating delivery costs that implement the same interface, but 

one of those requires you to enter the total weight of the shipment, and the others do 

not, this can be said to violate the principle. All modules must also require the total 

weight to be known, even if nothing is done with it, in order to keep the interface and 

the assumptions the same. If you do not use this, then any time these classes are used 

in your codebase, you will have to be aware of an edge case, rather than it being a truly 

reusable component. 

Some programming languages allow you to formally specify these cases in the form 

of preconditions or postconditions, and to test them. A precondition is an assertion 

that must be true for you to be able to correctly use an interface, and a postcondition is 

something you can assert about the output of a function or method, if the preconditions 

were satisfied. For example, in our VAT calculator case, we could express a precondition 

that the input must be a list of objects that consist of a price, which is a non-negative, 

and whether or not it's VAT exempt, which is a boolean. The postcondition is that it will 

give you a non-negative integer. Some computer science theory goes further than this 

to fully specify pre- and postconditions in mathematical form in order to make systems 

that are mathematically provable as correct, but this is something you will be unlikely to 

come across on a day-to-day basis. 

The 'I' in SOLID is the interface-segregation principle, which says that a user of an 

interface should not be required to depend on more methods than it actually needs in 

order to complete its task. This is related to the single responsibility principle of keeping 

classes small and focused on a single thing. If a class gets too big, or an interface does too 

much, then it's best to break it into smaller classes with more tightly scoped interfaces. 



 

For example, a shopping cart can be added to or read from, but during the checkout 

process, it only needs to be read from. If the interface for your shopping cart gets too 

large, you could split it into two—one that deals with adding and another with reading— 

and then have a class that implements both interfaces. 

Dependency inversion is one of the more famous components of SOLID and, 

especially in frameworks for strong object-oriented languages like Java, one you are 

forced to tackle head-on, especially if you want to do any unit testing. The approach to 

building a running system out of components that implement dependency inversion is 

called dependency injection. Dependency injection can also be a headache for new 

developers, those who are not used to enterprise environments, and those who are 

coming from weaker OO languages, but this is more due to overly large and onerous 

dependency injection frameworks than the concept itself. With dependency inversion, 

you are not responsible for finding the classes or modules that you need to do your 

tasks; instead, you are given them. Sometimes this is done using dependency injection 

frameworks like Spring, but you can also write code that injects the appropriate methods 

directly (known as wiring code), without using a framework. 

As a result of dependency inversion, you do not depend on concrete instances of 

your dependencies, but instead on the interfaces. For example, a class that talks to a 

backend service, rather than instantiating its own HTTP client, can be given a client 

that implements the same interface. In development mode, this could be a client that 

implements the need to work through corporate proxies, but in production mode, 

which may be deployed to AWS, it could be one that does not use proxies, but perhaps 

implements a caching layer instead. 

Although the SOLID principles are formulated around object-oriented programming, 

they can be repurposed for other paradigms too. For example, in dependency injection, 

dependencies are often passed to the constructor, but in functional programming style, 

the dependency inversion principle can be implemented using closures. 

 


	Designing Systems
	System Architectures
	Figure 4-1. A monolith systems diagram versus a microservice equivalent

	Identifying Concepts
	Identifying User Interactions
	Handling Commonalities
	Working with Legacy and External Dependencies
	Component Interactions
	Applications vs. Modules
	Cross-Functional Requirements
	Caching
	Designing for Failure
	Designing Modules


